

UNIVERSITY OF OSLO	
Solution	
Insert $s(\vec{x},t) = A \exp\{j(\omega t - k_x \cdot x - k_y \cdot y - k_z \cdot z)\}$	
into $\nabla^2 \overrightarrow{s} = \frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2}$	
$\Rightarrow k_x^2 s(\cdot) + k_y^2 s(\cdot) + k_z^2 s(\cdot) = \omega^2 s(\cdot)/c^2$	
or $k_x^2 + k_y^2 + k_z^2 = k ^2 = \omega^2/c^2$ or $ k = \omega/c$ which is the condition for this guess to be a solution	
DEPARTMENT OF INFORMATICS	6

